25. Kaiser, P., The avian immune genome–a glass half-full or half-empty? Cytogenetic and genome research, 2007. 117(1-4): p.
221-230.
26. Trigunaite, A., J. Dimo, and T.N. Jørgensen, Suppressive effects of androgens on the immune system. Cellular immunology,
2015. 294(2): p. 87-94.
27. Qureshi, M., et al., Establishment and characterization of a chicken mononuclear cell line. Veterinary immunology and
immunopathology, 1990. 26(3): p. 237-250.
28. Beug, H., et al., Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three
distinct phenotypes of differentiation. cell, 1979. 18(2): p. 375-390.
29. Bedard, P.-A., et al., Constitutive expression of a gene encoding a polypeptide homologous to biologically active human platelet
protein in Rous sarcoma virus-transformed fibroblasts. Proceedings of the National Academy of Sciences, 1987. 84(19): p.
6715-6719.
30. Sugano, S., M.Y. Stoeckle, and H. Hanafusa, Transformation by Rous sarcoma virus induces a novel gene with homology to a
mitogenic platelet protein. Cell, 1987. 49(3): p. 321-328.
31. Barker, K.A., et al., Transformation-associated cytokine 9E3/CEF4 is chemotactic for chicken peripheral blood mononuclear
cells. Journal of virology, 1993. 67(6): p. 3528-3533.
32. Klasing, K.C., Avian macrophages: regulators of local and systemic immune responses. Poultry science, 1998. 77(7): p. 983-
989.
33. Iqbal, M., V.J. Philbin, and A.L. Smith, Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets
and cell lines. Veterinary immunology and immunopathology, 2005. 104(1-2): p. 117-127.
34. Henderson, S.C., D.I. Bounous, and M.D. Lee, Early events in the pathogenesis of avian salmonellosis. Infection and
immunity, 1999. 67(7): p. 3580-3586.
35. Withanage, G., et al., Cytokine and chemokine responses associated with clearance of a primary Salmonella enterica serovar
Typhimurium infection in the chicken and in protective immunity to rechallenge. Infection and immunity, 2005. 73(8): p.
5173-5182.
36. Jones, M.A., et al., The Salmonella pathogenicity island 1 and Salmonella pathogenicity island 2 type III secretion systems play
a major role in pathogenesis of systemic disease and gastrointestinal tract colonization of Salmonella enterica serovar
Typhimurium in the chicken. Avian Pathology, 2007. 36(3): p. 199-203.
37. Farnell, M.B., et al., Oxidative burst mediated by toll like receptors (TLR) and CD14 on avian heterophils stimulated with
bacterial toll agonists. Developmental & Comparative Immunology, 2003. 27(5): p. 423-429.
38. Kogut, M., H. He, and P. Kaiser, Lipopolysaccharide binding protein/CD14/TLR4-dependent recognition of Salmonella LPS
induces the functional activation of chicken heterophils and up-regulation of pro-inflammatory cytokine and chemokine gene
expression in these cells. Animal biotechnology, 2005. 16(2): p. 165-181.
39. Wu, Z. and P. Kaiser, Antigen presenting cells in a non-mammalian model system, the chicken. Immunobiology, 2011. 216(11):
p. 1177-1183.
40. Leveque, G., et al., Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in
chickens. Infection and immunity, 2003. 71(3): p. 1116-1124.
41. Yilmaz, A., et al., Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics, 2005. 56(10): p. 743-
753.
42. Temperley, N.D., et al., Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC
genomics, 2008. 9(1): p. 62.
43. Boyd, A., V. Philbin, and A. Smith, Conserved and distinct aspects of the avian Toll-like receptor (TLR) system: implications for
transmission and control of bird-borne zoonoses, 2007, Portland Press Limited.
44. Nang, N.T., et al., Induction of inflammatory cytokines and toll-like receptors in chickens infected with avian H9N2 influenza
virus. Veterinary Research, 2011. 42(1): p. 64.
45. Brownlie, R. and B. Allan, Avian toll-like receptors. Cell and tissue research, 2011. 343(1): p. 121-130.
46. Li, Y.-W., et al., Molecular cloning of orange-spotted grouper (Epinephelus coioides) TLR21 and expression analysis post
Cryptocaryon irritans infection. Fish & shellfish immunology, 2012. 32(3): p. 476-481.
47. Wei, L., et al., Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections.
Veterinary research, 2014. 45(1): p. 66.
48. Qi, Y., et al., CpG oligodeoxynucleotide-specific goose TLR21 initiates an anti-viral immune response against NGVEV but not
AIV strain H9N2 infection. Immunobiology, 2016. 221(3): p. 454-461.
49. ARSTILA, T.P., O. VAINIO, and O. LASSILA, Central role of CD4+ T cells in avian immune response. Poultry science, 1994.
73(7): p. 1019-1026.
50. Suarez, D. and S. Schultz-Cherry, Immunology of avian influenza virus: a review. Developmental & Comparative
Immunology, 2000. 24(2-3): p. 269-283.
51. Cooper, M.D., et al., Avian T cell ontogeny, in Advances in immunology. 1991, Elsevier. p. 87-117.
52. Six, A., et al., Characterization of avian T-cell receptor γ genes. Proceedings of the National Academy of Sciences, 1996.
93(26): p. 15329-15334.
53. Masteller, E.L., et al., Avian B cell development. International reviews of immunology, 1997. 15(3-4): p. 185-206.
Citation: Birhan M. 2019. Systematic review on avian immune systems. J. Life Sci. Biomed. 9(5): 144-150; www.jlsb.science-line.com
149